Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
J Photochem Photobiol ; 12: 100151, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2120218

ABSTRACT

Objective: We report on the development and characterization of a UV-C (λ  =  200 - 280 nm, λpeak = 254 nm) chamber designed for the rapid disinfection of N95 class filtering-facepiece respirators contaminated with SARS-CoV-2 coronaviruses. The device was evaluated against Betacoronavirus strain MHV-3 and its virucidal capacity was evaluated as a function of different applied UV-C doses (UV-C exposure times of 60 s, 120 s, 180 s, and 240 s) using two types of respirators geometry (shell and two-panel shapes, 3M 8801 H and 9920 H, respectively), at eight points of the respirators. Background: Most chemical disinfection methods are not recommended for N95 masks. UV-C light provided by UVGI lamps (254 nm) is an effective physical agent against viruses and bacteria due to direct photochemical harming effect on DNA/RNA, and can provide rapid disinfection for personal protective equipment such as N95/PFF2 masks. Results: The device reached a mean elimination rate of 99.9999% of MHV-3 inoculated into all the assessed different points on the tested PFF2 respirator models in a UV-C cycle of just 60 s. Statistical analysis performed through Person´s chi-square test showed no correlation between the viral infectivity reduction and the viral inoculation point (p = 0.512) and the tested respirator models (p = 0.556). However, a correlation was found between the exposure time and the viral infectivity reduction (p = 0.000*), between UV-C and no UV-C exposure. All the tested UV-C exposure times (60 s, 120 s, 180 s, and 240 s) provided the same reduction in infection rates. Therefore, 60 s was confirmed as the minimum exposure time to achieve a 99.9999% or 6 Log reduction in MHV-3 coronavirus infection rates in the PFF2 samples tested in the device. Conclusions: We conclude that the assessed UV-C chamber for the inactivation of MHV-3 coronavirus in N95/PFF2 standard masks can be a promising tool for effective and rapid disinfection of coronaviruses, including SARS-CoV-2 virus.

2.
Polymers (Basel) ; 14(19)2022 Oct 04.
Article in English | MEDLINE | ID: covidwho-2066331

ABSTRACT

Electrospinning technology was used to produced polyvinylpyrrolidone (PVP)-copper salt composites with structural differences, and their virucidal activity against coronavirus was investigated. The solutions were prepared with 20, 13.3, 10, and 6.6% w/v PVP containing 3, 1.0, 0.6, and 0.2% w/v Cu (II), respectively. The rheological properties and electrical conductivity contributing to the formation of the morphologies of the composite materials were observed by scanning electron microscopy (SEM). SEM images revealed the formation of electrospun PVP-copper salt ultrafine composite fibers (0.80 ± 0.35 µm) and electrosprayed PVP-copper salt composite microparticles (1.50 ± 0.70 µm). Energy-dispersive X-ray spectroscopy (EDS) evidenced the incorporation of copper into the produced composite materials. IR spectra confirmed the chemical composition and showed an interaction of Cu (II) ions with oxygen in the PVP resonant ring. Virucidal composite fibers inactivated 99.999% of coronavirus within 5 min of contact time, with moderate cytotoxicity to L929 cells, whereas the virucidal composite microparticles presented with a virucidal efficiency of 99.999% within 1440 min of exposure, with low cytotoxicity to L929 cells (mouse fibroblast). This produced virucidal composite materials have the potential to be applied in respirators, personal protective equipment, self-cleaning surfaces, and to fabric coat personal protective equipment against SARS-CoV-2, viral outbreaks, or pandemics.

3.
Front Bioeng Biotechnol ; 10: 858156, 2022.
Article in English | MEDLINE | ID: covidwho-1952235

ABSTRACT

Antiviral and non-toxic effects of silver nanoparticles onto in vitro cells infected with coronavirus were evaluated in this study using High-Resolution Magic-Angle Spinning Nuclear Magnetic Resonance (HR-MAS NMR) spectroscopy. Silver nanoparticles were designed and synthesized using an orange flavonoid-hesperetin (HST)-for reduction of silver(I) and stabilization of as obtained nanoparticles. The bio-inspired process is a simple, clean, and sustainable way to synthesize biogenic silver nanoparticles (AgNP@HST) with diameters of ∼20 nm and low zeta potential (-40 mV), with great colloidal stability monitored for 2 years. The nanoparticles were used for the fabrication of two types of antiviral materials: colloids (AgNP@HST spray) and 3D flexible nanostructured composites. The composites, decorated with AgNP@HST (0.05 mmol L-1), were made using cellulose nanofibers (CNF) obtained from orange peel and graphene oxide (GO), being denominated CNF@GO@AgNP@HST. Both materials showed high virucidal activity against coronaviruses in cell infection in vitro models and successfully inhibited the viral activity in cells. HR-MAS 1H-NMR technique was used for determining nanomaterials' effects on living cells and their influences on metabolic pathways, as well as to study viral effects on cells. It was proven that none of the manufactured materials showed toxicity towards the intact cells used. Furthermore, viral infection was reverted when cells, infected with the coronavirus, were treated using the as-fabricated nanomaterials. These significant results open possibilities for antiviral application of 3D flexible nanostructured composite such as packaging papers and filters for facial masks, while the colloidal AgNP@HST spray can be used for disinfecting surfaces, as well as a nasal, mouth, and eye spray.

4.
Transbound Emerg Dis ; 69(5): e2863-e2875, 2022 Sep.
Article in English | MEDLINE | ID: covidwho-1901853

ABSTRACT

Bat coronaviruses (Bat-CoVs) represent around 35% of all virus genomes described in bats. Brazil has one of the highest mammal species diversity, with 181 species of bats described so far. However, few Bat-CoV surveillance programmes were carried out in the country. Thus, our aim was to jevaluate the Bat-CoV diversity in the Atlantic Forest, the second biome with the highest number of bat species in Brazil. We analysed 456 oral and rectal swabs and 22 tissue samples from Atlantic Forest bats, detecting Alphacoronavirus in 44 swab samples (9.6%) targeting the RdRp gene from seven different bat species, three of which have never been described as Bat-CoV hosts. Phylogenetic analysis of the amino acid (aa) sequences coding the RdRp gene grouped the sequences obtained in our study with Bat-CoV previously detected in identical or congeneric bat species, belonging to four subgenera, with high aa identity (over 90%). The RdRp gene was also detected in three tissue samples from Diphylla ecaudata and Sturnira lilium, and the partial S gene was successfully sequenced in five tissues and swab samples of D. ecaudata. The phylogenetic analysis based on the partial S gene obtained here grouped the sequence of D. ecaudata with CoV from Desmodus rotundus previously detected in Peru and Brazil, belonging to the Amalacovirus subgenus, with aa identity ranging from 73.6% to 88.8%. Our data reinforce the wide distribution of Coronaviruses in bats from Brazil and the novelty of three bats species as Bat-CoV hosts and the co-circulation of four Alphacoronavirus subgenera in Brazil.


Subject(s)
Alphacoronavirus , Chiroptera , Coronavirus Infections , Coronavirus , Alphacoronavirus/genetics , Amino Acids/genetics , Animals , Brazil/epidemiology , Coronavirus/genetics , Coronavirus Infections/veterinary , Forests , Genetic Variation , Genome, Viral , Phylogeny , RNA-Dependent RNA Polymerase
5.
Photobiomodul Photomed Laser Surg ; 40(4): 273-279, 2022 Apr.
Article in English | MEDLINE | ID: covidwho-1830952

ABSTRACT

Objective: We report on the development and characterization of a UV-C light-emitting diode (LED) 280 nm cluster prototype device designed for the rapid disinfection of SARS-CoV-2 coronaviruses. The device was evaluated against the Betacoronavirus mouse hepatitis virus-3 strain, and its virucidal capacity was probed as a function of different applied UV-C doses versus different situations concerning irradiation distances. Background: UV-C LEDs are light emitters that offer advantages over low-pressure mercury lamps, such as quasimonochromaticity, lower electrical power consumption, instant on/off with the instant full-power operation, unlimited on/off cycles for disinfection schemes, and a much longer lifetime operation, in addition to portability aspects, as well as UV-C LEDs do not contain heavy metal in its composition such as mercury, found in ultraviolet germicidal irradiation (UVGI) lamps. Results: This novel device reached a 99.999% elimination rate at a distance of 9 cm at all the tested irradiation times (dose dependence), demonstrating that it took only 30 sec to achieve this inactivation rate. Its virucidal effectivity in rapid virus inactivation was demonstrated. Conclusions: We conclude that the HHUVCS cluster device (λp = 280 nm) provides a rapid virucidal effect against the SARS-CoV-2 coronavirus. The current research should encourage further advances in UV-C LED-based devices designed for the inactivation of SARS-CoV-2 virus on surfaces, in air, and in liquids.


Subject(s)
COVID-19 , Mercury , Animals , Disinfection , Mice , SARS-CoV-2 , Ultraviolet Rays
6.
Journal of the American Ceramic Society ; n/a(n/a), 2021.
Article in English | Wiley | ID: covidwho-1201660

ABSTRACT

Abstract The sanitary crisis caused by the SARS-CoV-2 has increased the demand for bioactive materials to mitigate coronavirus spread. The use of masks has been reported as an essential strategy to prevent coronavirus transmission, but masks can become contaminated rapidly after use. Metals species containing compounds, especially those from the copper group, present properties that can be explored to suppress viral activity. Natural polymers, like alginate, can improve biocompatibility and adjust metal ion availability on hybrid coatings. This study assesses iron, copper, silver, and gold salts and their combination with biopolymers to design surfaces with virucidal properties. Viral inactivation assays with MHV-3 coronavirus strain and cytotoxicity tests with L929 cells were conducted to the hybrid coatings on polypropylene masks. These coatings were characterized by scanning electron microscopy with energy dispersive spectroscopy, Fourier-transform infrared spectroscopy with attenuated total reflectance device, and atomic absorption spectroscopy techniques. Multilayer coatings of alginate-copper sulfate presented 99.99% viral inactivation in a timely release of copper ions.

SELECTION OF CITATIONS
SEARCH DETAIL